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laminar free convection on an isothermal verhjcal f)&t plate. For a num-
ber of specific cases, solutions of the bounds layer equations appro-
priate to the variable property situation were carried out for gases and
for liquid mercury. Utilizing these findings, a simple and accurate
shorthand procedure is presented for calculating free convection heat
transfer under variable property conditions. This calculation method is
well established in the heat transfer field. It involves the use of re-
sults which have been derived«{gffconstant property fluids, and of a set
of rules (called reference tempeéatures) for extending these constant
property results to variable property situations. For gases, the con-
stant property heat transfer results are generalized to the variable
property situation by replacing. B (expansion coefficient) by l/To
and evaluating the other properties at T, = T, - 0.38(T, - T_). For

liquid mercury, the generalization may be accomplished by evaluating all

the properties (including B) at this same T

.. It is vorthwile noting

*The material presented here is taken ﬂgAQAaFggbcgﬁggls submitted

to Harvard University by E. M. Sparrow (see Blbllograﬁqu ref. 1).
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that for these fluids, the film temperature (with B = 1/T_ for gases)

appears to serve as an adequate reference temperature for most applica-

tions.

Results are also presented for boundary layer thickness and

velocity parameters.

A A,

NOMENCLATURE

coefficients in the polynomial representations of fluid
properties of liquid mercury

dimensional constants in Sutherland's formulas of table 1,
A) = 362° F gbs, A, = 198.7° F abs

plate width
dinensional constant defined by eq. (6a)

specific heat at constant pressure

coefficient of friction defined by eq. (29)
dimensionless dependent variable defined by eq. (6b)
acceleration due to gravity

Grashof number based on x, dimensionless, see eqgs. (13),
(13a), (13Db)

Grashof number based on L

local heat transfer coefficient, g/(T, - Ta)
average heat transfer coefficient, Q/Lb(Tw - T.)
thermal conductivity

plate height

local Nusselt number, hx/k, dimensionless
average Nusselt number, hL/k, dimensionless
static pressure

Prandtl number, cpi/k, dimensionless

local heat transfer rate per unit area of plate
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Q over-all heat transfer rate, b fﬂL q dx

T absolute temperagure ©

t Fahrenheit temperature

Ty film temperature, (T_ + T.)/2; or te = (t, + p_)/z

u velocity component in x direction

Upax maximum value of u across the boundary layer

v velocity component in y direction -

W rate of fluid flow generated by free convection, b f‘ pu dy

X coordinate measuring distance along plate from leadigg edge

y coordinate measuring distance normal to plate

Yu distance from plate at which Uax Occurs

B coefficient of thermal expansional, - %(%%)

51 bo%gd?r¥ §7¥;r Eh;c?nfsi defined as distance from plate at which
(] W (]

1 dimensionless similarity variable defined by eq. (6a)

2] dimensionless temperature variable, (T - 'I:D)/(Tw -T.)

K absolute viscosity

v kinematic viscosity, u/p

o} density

Ty shear stress at plate surface

v stream function

Subscripts

w denotes wall conditions

- denotes ambient conditions

r denotes conditions at reference temperature
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INTRODUCTION
The presence of a bhbyancy forrce is a requirement for the existence
»

of a free convection flow. Ordinarily, the buoyancy arises from density.
differences which are a consequence of temperature gradients within the
fluid. Any analytical treatment of free convection must include density
variations at least to the extent that a buoyancy force enters the
problemn. |

A characteristic common to previous analytical studies of free con-
vection has been the neglect of all fluid property variations, except for
the essential density differences noted above¥. Such a simplified treat-
ment does not appear unreasonable when the temperature differences in-
volved are small. This intuitive feeling has been corroborated in a
formal manner by Ostrach (2). For situations where there are large tem-
perature differences, the adequacy of the resulté derived from the con-
stant property analysis has been in doubt.

An analytical treatment of the variable property problem, including
numerical solutions, first appears to have been given in the thesis (1)
from which this paper is taken. Some time after the appearance of Ref.
1, a much less extensive study was described in a Russian article by
Tanaev (3). There is no significant overlap betweenjﬁef. 3 and the pre-
sentation here. .

The analysis is made for an isothermal vertical plate, and the flow

is taken to be laminar. For a large number of specific cases, numerical

¥The fluid properties entering the problem are the thermal conduc-

tivity, viscosity, specific heat, and density.




- 5 -
solutions of the boundary layer equations appropriate to the variable
property situation were carried out for gases. It was initially planned
to also study the variable property problem for several liquid metals.
However, the nature of the property variations and the exceedingly time
consuming numerical computations forced the current study to be limited
to one liquid metal, namely, mercury.

Prime attention is focused on the heat transfer. Utilizing the heat
transfer results corresponding to special cases for which numerical solu-
tions were obtained, a simple and accurate shorthand procedure is pre-
sented for computing heat transfer under variable property conditions in
gases and liquid mercury. This method is well known in the heat transfer
field. It involves the use of results derived for constant property
fluids, and of a set of rules for extending the constant property results
to variable property situations. These rules are commonly termed refer-
ence temperatures. Not only will reference temperatures be derived for
the heat transfer, but also for boundary layer thickness and velocity
parameters. Those who are interested primarily in results are invited |
to pass over the section on analysis.

ANALYSIS

Physical model and coordinates. - The physical model and the co-

ordinate system are portrayed in an elevation view in Fig. 1. Two phys-
ical situations are shown which come within the scope of the analysis.
The left hand sketch depicts the case where the wall temperature, Ty»
exceeds the ambient temperature T_. Under these circumstances the free-
convection motion is upward as shown. The right hand sketch shows the

situation where T, is lower than the ambient temperature T_. In this

case, the fluid flow is downward along the plate.
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If the coordinate systems are taken as indicated, the mathematical
distinction between the two situations vanishes when the conservation
equations, as written later, are made dimensionless. So, separate analy-
ses need not be made. Since it seems easier to visualize occurrences
associated with the hot wall case, i.e., Ty > T_, the analysis will be
directed toward that situation. However, the results will be presented
in a manner applicable to both Ty, > T, and T, < T,.

Conservation laws. - The equations expressing conservation of mass,

momentum, and energy for steady flow in a boundary layer on a vertical

plate are
Sow) + 5 ov) = 0 (1)
P(u%ﬁ+v%;‘>=-%%- pg+%(u%u) (2)
-%-o (3)

ol B0 v 5)- 3 3) “

Viscous dissipation and work against the gravity field have been
neglected.

The boundary conditions aﬁpropriate to the problem are

v=0
u=0

u=0 Fy=0 Y- (5)
T= T,

T:T.w

where 'I'w and T_ are prescribed constants.

From Eq. (3), it follows that the pressure p 1is a function of x

alone (i.e., a function only of height along the plate). So, dp/dx 1is
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constant across the boundary layer and may be evaluated as

op/dx = - pg&
With this substitution, Eq. (2) becomes
p(u %{ +v %u) = glp, - P) + %(u %) (2a)

There appears in this equdtion a density difference, P, - P which pro-
vides the buoyancy force for the free convection motion.

The customary approach followed in the constant property analysis
is first to replace the density difference by a temperature difference,
and then to assume that p, u, Cps and k are constant.

The present analysis continues without placing any restrictions on
the nature of the property variations. The solution of Eq. (1) may, as
usual, be written in terms of a stream function ¥ defined by the

relations
-—-u=a, —V=-%¥ (la)

where Pys the fluid density at the wall, is regarded as a constant.
Then,the velocity components u and v which appear in Egs. (2a) and
(4) are replaced in favdr of the stresm function ¥. The result of the
substitution is a rather complicated looking pair of simultanedus-partial’
differential equations for ¥ and T as functions of x and Y.

Rather than deal with these two formidable partial differential equations
directly, experience suggests a method of transforming them to ordinary
differential equations, which are easier to solve. In the usual termin-
ology of boundary layer theory, such a transformation is called a simi-

larity transformation.
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Reduction to ordinary differential equations. - A new independent

variable 71, called a similarity variable, is defined by

=1/4 p ]
M= cx /\J/\y o W o)
b v o
where & (62
1/4 )

glpg, - py) /oy
c = 2
4y
w w—t

New dependent variables F and 6 are given by

v 1 T-Ta
F(n) = 371 * Ty’ 6(n) = 7= 1, (6b)

The function 6 is a dimensionless temperature and F is related to the

velocities in the following way

2.1 Py WeC
u = 4vaX/2F', V'—"-F,:iTi[TIF'-SF (7)

The primes represent differentiation with respect to 7.
Under the transformation Eqs. (6a) and (b), the partial differential

equations for ¥ and T become

(p_/p) -1
a4 es F] + 3FF" - 2(F')% + o0 =0
an|eHy (o 7pw5 -1

-t

(8)

r
a| pk °p '
—]LE=_0'l + 3Pr 0' = 0O
dnL?wkw ‘] cPw

The Prandtl number is represented by Pr and the subscript w denotes

conditions at the wall (y = O). The boundary conditions, Eq. (5), trans-

form to

(9)

e
it
o
=
|
o
=
n
]

D
L}
=
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It may be noted that the transformation relations, as well as the
resulting ordinary differential equations, can be reduced directly to the
well-known equations for the constant property fluid. Further, all solu-
tions of Egs. (8) subject to the boundary conditions (9) have the charac-
teristic that u=0 and T = T; along the line x = O.

Simplifications associated with p = pRT. - For the special case of

fluids which obey the perfect gas law, p = pRT, there are certain simpli-
fications which can be introduced into the analysis. Consider first the
buoyancy force, g(q_ - p), which appears in Eq. (2a). For a perfect gas,
this density difference can be transformed into a temperature difference
without making any approximations. It 1s only necessary to notice that
both Pe and p are to be evaluated at the same value of x, and con-
sequently, at the same static pressure p. With this in mind, it follows
directly that

o, - o= (T-1) (10)

In the constant property analysis, it has been customary to write

o, - p=pe(T - T)
wvhere B 1is the coefficient of expansion. So, it is seen that the
buoyancy force used in the constant property analysis is precisely cor-
rect for a perfect gas, provided that B is replace by 1/T_.

Further, in the differential Egs. (8), the dimensionless buoyancy
force (the last term) can be simplified to

(e fo) -1 T-T,
_(F.pr) - 1=Tw- T.

= 6 (108.)
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So, Egs. (8) become

.d_ﬂ.'F"] + 3FF" - z(F’)2 +6=0
dn Pt &

4 | ek g1| 4+ zpr (?2-)F'9 =0
dﬂ[éwkw ‘J w cpw ,J

It is worthwhile noting that for a very special sort of variable

(8a)

property gas, Egqs. (8a) reduce to the equations for a constant property
fluid. Consider a gas having the property variations: p = pRT, pu =
constant, pk = constant, Cp = constant. Inspection of Eqs (8a) show the
tremendous simplification afforded by the assumption that pu = constant
and pk = constant. It follows that

pufogy = 1, ok/ogk, =1
and also that k/u = constant. Further, it is seen that the Prandtl
number (= cpu/k) is also a constant. Then Eqs. (8a) may be rewritten as

F" +3FF" - 2(F)2 +06=0

(8b)
8" + 3Pr F6' = O

But, these equations are precisely those for the constant property prob-
lem. Also identical are the boundary conditions. So, from the mathe-
matical point of view, the constant property problem is identical to that
for the special varisble property fluid: p = pRT, pk = constant,
pL = constant, cp = constant. All solutions which have been obtained for
the constant property differential equations become available for this
special variable property fluid.

It is interesting to note that a similar finding applies in forced

convection. In fact, a common procedure for accounting for variable .

I
i
<

“ . . - * N LN PR o o I
£ e TR T co ! ; X [V 8 R ISV
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property effects for forced convection over a flat plate is to postulate
that the real gas is sufficiently well approximated by the special gas
Just considered.

HEAT TRANSFER PARAMETERS AND GRASHOF NUMBERS

Local heat transfer. - The local heat flux from the surface to the

fluid may be calculated using Fourier's Law

-
=-|x=
! [ ayleo

Introducing the dimensionless variables from Eqs. (8a) and (b), the ex-

pression for q becomes
2114 a6
q= - k(T 6 - T )ex l/l?‘{ﬁﬁl (11)
U o}
L. CEN

The derivative [d@/dn]n=o, normally sbbreviated 6'(0), is found from the
solutions of Egs. (8). A dimensionless representation of the results is
achieved by use of the local heat transfer coefficient and local Nusselt

number, which are written in the ususl way as

q bx
k

h=sq g My (12)

1}

Further, a generalized Grashof number which is applicable to both con-

stant and variable property fluids is defined by

) x> {!p_ - pwl/pw}

er 52

(13)

The absolute magnitude sign removes the necessity for separate consider-
ation of T, > T  and T, < T,.

Using these definitions of h, Nuy, and Gry the local heat flux
given by Eq. (11) becomes

o (-6'(0)) .y

X, W 1/5 X,W

(14)
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where the second subscript on the Nusselt and Grashof numbers indicates
the location at which k and v are evaluated.

Overall heat transfer. - The overall heat transfer Q is found by

L
Q,=bf q dx (15)
0

where b 1is the plate width. Introducing the following dimensionless

integrating Eq. (11). So,

groups

- éwl/pw}

- _ Q — _ Il
b= giT, - T W =% "

(18)

leads to the following dimensionless result for the overall heat transfer

Nuy, = % L:‘:;_;_(_Qﬂ Gri{i (17)

The Grashof number. - The generalized Grashof number defined by

Eq. (13) arises naturally from the analysis of the general variable
property fluid. The form taken by this definition for certain special
cases is of interest.

For instance, for the constant property analysis, Eq. (13) simpli-

fies to
gB‘Tw - T-lxs
Ty = 02 (]—33)
This is identical to usual Grashof number definition.
For a perfect gas, the Grashof number becomes
gITw - :—lxs
Gry = 5 (13b)

T v
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DESCRIPTION OF THE GASES STUDIED

In previous varisble properties analyses for gases, it has been
common to use idgalized forms of the property variations. There have
been a few instances where real gas properties were used. In the present
study, both idealized and real gases have been included, the real gas
being a close approximation to air. Table I;describes the five gases to
be considered here in the order (reading to left to right) in which they
will be discussed. All are seen to obey the perfect gas law, p = pRT.

Absolute temperatures are used exclusively throughout the analysis for

gases.
TABLE I
Description of Gases A, B, C, D, and E
Gas A Gas B Gas"C Gas D Gas E
p = pRT P = PRT p-= pRT P = PRT p = PRT
3/2 3/2
/4 2/3 B T T
k 'I'3 k~T pk = const. k T Al K~ TF Al
2 73/2
. 3/4 . 2/3 i, L i
M T3 K T / pu = const. B T Al K T A2
= bo + blT
¢, = const. ¢, = const. ¢, = const. c, = const. ¢ -
P P P D P be + boT
2 .
Pr = const. Pr = const. Pr = const. Pr = const. Pr = variable

Gases A, B, and

havior.

C represent simple idealizations of real gas be-

The power law variations for k and p are commonly used
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approximations. The assumption of constant specific heat and Prandtl
number is included because, for real gases, the variation of these prop-
erties is small compared to those of k, u, and p. The Sutherland type
formula used to describe the conductivity and viscosity variations of gas
D 1is closer to reality than are the simple power laws. Since cp and
Pr are maintained as constants for gas D, the same Sutherland formula
is used for k and p. Gas E 1is a close approximation to air. Hence,
variations of p and Pr are included, and different Sutherland for-
mulas are used for k and (Al# Ao). Two linear equations are used
to represent the specific heat variation over the temperature range
studied.

HEAT TRANSFER RESULTS FOR GASES

Heat transfer results for gases A through E will be presented for a
large number of special cases. Utilizing these results, a rapid and
accurate shorthand method will be presented for calculating heat transfer
to gases under variable property conditions. As described in the
INTRODUCTION, the calculation procedure involves the use of results which
have been derived for constant property fluids, and of a rule for ex-
tending these constant property results to variable property situations.
This rule is commonly called a reference temperature.

The following approach will be used bere in deriving and testing a
reference temperature rule for heat transfer. First, using the numerous
numerical calculations for gas A, a reference temperature rule will be
derived. Then, tests of the wider applicability of this reference tem-
perature result will be made using the less numerous solutions for gases

B, C, D, and E.
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Results for gas A. - The properties of gas A are given in Table I.

In order to compute the heat transfer, it is first necessary to
solve the differential Egs. (8a) subject to the boundary conditions (9).
The gas properties appearing in Eqs. (8a) may be evaluated for gas A with

the aid of Table I. So, it is seen that cp/cp = 1, Pr = constant and
W

-1/4
ou _ _pk (-T-> f (18a)
Pty pwkw Tw

Introducing the dimensionless temperature 6 = (T - T )/(T, - T ), it
L_J

follows that

-1/4
e e 9( 3'3) . ! (18b)

In light of this, it may be observed that before commencing with a solu-
tion of Eqs. (8a) to find F and 6, it is necessary first to specify
the value of TW/T_ (as well as of the Prandtl number). The appearance
of this temperature ratio is associated with the variable property
problem. But, the fact that only a temperature ratio appears is actually
a considerable simplification; since for the general variable property
fluid it is necessary to specify T, and T. separately.

Numerical solutions* of Eqs. (8a) for gas A were carried out for a
vide range o% values of TW/T_ for Pr = 0.7 and for selected values of

T

W/T- for Pr = 1.0. The heat transfer results corresponding to these

solutions are listed in Table II. The Nusselt and Grashof numbers, di-

mensionless parameters, are given by Egs. (12) and (13b), respectively.

*A11 numerical integrations were carried out on an IBM Card Pro-
grammed Calculator using a technique presented in detail in appendix B
of reference 2.
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TABLE 1T

Heat Transfer Results for Gas A

Nux,w/Gri)/i or _ﬁTlL,W / % Gri{i
T,/ Pr = 0.7 Pr = 1.0
4 0.371"
3 0.368. 0.418
5/2 0.366:
2 0.363
3/4 0.348:
1/2 0.339 -
1/3 0.330" 0.375:
1/4 0.323;_

Now, we proceed to generalize these results. Attention is first
focused on Pr = 0.7. From an analytical solution for the constant

property fluid, it is found that the heat transfer (for Pr = 0.7) is

— 1/4
Mu, /eri/* = 0.353 = oy /% GrL/ (19)*

Here, the Grashof number is given by Eq. (13a). We are immediately led
to ask whether there is some way by which the constant property result,
Eq. (19), can be made to coincide with the variable property results
appearing in Table II. It may be observed that the temperature for
evaluating k, Vv, and B in Eq. (19) is at our disposal. With regard to
B, it has already been shown that it is proper to replace B by l/T_

when perfect gases are involved. It is a matter of making a few trials

1

/ﬁj*Tﬁis result may also be thought of as applying to gas A‘when’
T /T_ =»1.
w e
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to determine the temperature for evaluating k and v ofqu: (19) which
gives the best agreement between the constant property result ;nd the
variable property findings of Table II. This temperature, which may be
termed a reference temperature T,., is found to be

Tr = Ty - 0.38(T,; - T_), B=1/T, (20)
As shown by the dashed line of Fig. 2, the error in the heat transfer
predicted from the constant property result by using this reference tem-

perature is at most 0.6 percent over the entire range 1/4 < T

/T, < 4.

Figure 2 also shows the errors in the heat transfer predicted from the
constant property result when k and y are evaluated at the wall tem-
perature, at the ambient temperature, and at the film temperature Tf.

B 1is taken as l/T. in all cases. It is noteworthy that the use of Tf
as a reference temperature provides heat transfer results which would be
adequate for almost all engineering purposes.

The results listed in Table II for Pr = 1 were obtained to check
whether the reference temperatures found for Pr = 0.7 could be applied
for the entire range of gas Prandtl numbers. When reference temperatures
were computed for Pr = 1, they were found to be in excellent agreement
with those for Pr = 0.7. So, it is felt that Eq. (20) is valid for the
entZire Prandtl number range of gases.

. Having established a reference temperature rule for gas A, we now
proceed to see if it can be used for predicting variable property heat
transfer results for other gases.

Results for gas B. - As may be seen from Table II, gas B differs

from gas A only by a lowering of the exponent in the conductivity and
viscosity variations. The lower exponent becomes more appropriate in

describing real gas behavior as the temperature increases.
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Gas B will be treated in the following way: A special case will be
selected and heat transfer results will be computed based on a solution
of Eq. (8a). Then, for the same special case, an alternate heat transfer
result is computed for gas B using the constant property formula and the
reference temperature rule of Eq. (20). The comparison of the two heat
transfer results provides a test of the reference temperaturé procedure.

The case selected for study is Pr = 0.7, TW/I_ = 3. From & numeri-

cal solution of Eq. (8a), it is found that

1/4 — /4 1/4
Nuy o/Gry)y = 0.373 = Nuy /= Gry'y (21a)

The Grashof number is given by Eq. (13b). Then, using the constant
property formula, Eq. {19), and the reference temperature relation,

Eq. (20), an alternate heat transfer result for gas B is

1/4 — /4 1/4
Nuy L /Gry = 0.370 = Ny, o[z Grp’ o (21p)

It is seen that the prediction using the reference temperature procedure
is very good.

Results for gas C. - The very special mathematical simplifications

which are associated with gas C have already been pointed out; see Eq.
(8b) and associated discussion. Inspection of Eg. (8b) shows that Tw/?.
need not be specified.

From a numerical solution of Eq. (8b), the heat transfer result for
gas C for Pr = 0.7 is found to be

u b Nu

IV = =
/4 — 174 1/4 " 09 0
Gr}{,w Gry, Gr, /.

‘e ?

= 0.353 (22)
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where Gr, is given by Eq. (13b). A similar finding is true for the
overall heat transfer. It is thus seen that, as a consequence of the
special properties of gas C, the ratio N’ux/Gr,lc/4 is independent of the
second subscript indicating where the properties are evaluated.

Looking now at the constant property formula, Eq. (19), it is seen
that no matter how the properties are evaluated, its heat transfer result
coincides with the variable property result of Eq. (22). (That is, pro-
vided that B is evaluated as l/T-.) So, the reference temperature of
Eq. (20) is certainly satisfactory for gas C.

Results for gas D. - It has already been pointed out in the dis-

cussion of Table I that a Sutherland type representation for k and u
is generally closer to reality than are simple power. laws. For gas D,
the assumptions of constant cp and Pr are maintained, so the same
Sutherland relation is used for k and . The constant Al appearing
in Table I is assigned the value 362° F abs. This number is from a cor-
relation by Glassman and Bonilla (4) of thermal conductivity data for air.
With the aid of Table I, the property groupings pu and pk which
appear in the differential Eqs. (8a) may be evaluated. When the dimen-

sionless temperature 6 = (T - T_)/(T.w - T_) is introduced, there results

on _ ok = f E)l/z Yo,
_p = TW -TV T- ( L)+_§é-§~

-T—+91-F

w W w

Careful inspection of this expression shows that T,, and T must be
separately specified before a solution of Eq. (8a) can be carried out.

In other words, specific problems must be considered.



- 20 -
We proceed to test the reference temperature relation (20) in the
same fashion described for gas B. Heat transfer results based on solu-
tions of the differential‘equations are compared with alternate results
determined using the reference temperature procedure. The following two

|
special cases are considereds

Pr = 0.7 TLPr= 0.7
T, = 1800° F &bs » case I T, = 600° F sbs Wcase II
T, = 600° F abs T, = 1800° F abs

From numerical solution of Eq. (8a), the heat transfer results for these

cases are
1/4 0.371, case I

1/4 = 4 '

Nu, fGry/ . = Nug /—-GrL = (23a)
? ’ i35 v 0.335, case II

Alternately, heat transfer results can be computed for gas D for these

cases by using the constant property formula, Eq. (19), and the reference

temperature rule, Eq. (20). The results are

1/4 — 4 1/a |0.370, case I

Ny, w/Grx,w = Nug /‘ Orp,w = (23b)
’ ’ WIS Y 0,335, case 11

Again, it is seen that the predictions using the reference temperature

procedure are good indeed.

Results for gas E. - As has already been pointed out, gas E is meant
to be a close approximation to air. The k and p variations are rep-
resented by Sutherland formulas (see table I) taken respectively from
Glassman and Bonilla (4) and the NBS Tables (5). The constants A; and
A2 appearing in these representations are 362° F abs and 198.7° F abs
(110.4° X), respectively. The specific heat data, taken from the NBS

Tables, is represented by two straight lines over the temperature range
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studied. The variation of the Prandtl number need not be specified,
since it is determined once cp;, k,/and u are given.

The. property groupings oM, pk, and cp/cpw which appear in the
differential Egqs. (8a) may be evaluated with the aid of Table I. Once
this has been done, it is easy to see that it is necessary that T
and T, be separately specified.before proceeding with a solution
of Egs. (8a). So again, as for gas D, specific problems must be
considered.

We now proceed to check the reference temperature procedure in the
same manner as was already used for gases B, C, and D. The special

cases selected here for this purpose are

Pr, = 0.7 Pr, = 0.7
T, = 1800° F abs } Case I ‘T, = 600° R} Case II
Te = 600° F abs T, = 1800° R

Numerical solutions of Eqs. (8a) provide the following heat transfer
results
_ /4 1/4 "[0.358, case I

X’W/er’w ) NUL’W 5 GTL’W ) 0.346, case II (2ee)

We now proceed to compute alternate heat transfer results based on
the constant property findings and the reference temperature relation,
Eq. (20). In connection with this computation, it is worthwhile noting
a particular feature associated with the fact that the gas under con-
sideration has a temperature-dependent Prandtl number. Over the tem-

perature range studied for gas E, the Prandtl number variation was 4.5

percent. First, it may be observed that the constant property analysis
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yields

—_ 1/4
Nux/Gr,]E/4 = Nuy, /% GrL/= function of Pr (25)

where the Grashof number is given in Eq. (13a). This relation is plotted
in Fig. 3 for the Prandtl number range appropriate to gases. Now, con-
sider the application of Eq. (25) to a varisble property fluid with
temperature-dependent Prandtl number. Under these conditions, not only
are k and V evaluated at the reference temperature, but also Pr.
Using Eq. (25) and Fig. 3 in conjunction with the reference tem-
perature relation (20), alternate heat transfer results for gas E for..

cases. I 'and 1T are found to be

1/4 4 1/ 0.361, case I
7 Gr

Nux,w/er,w = Nup, 4 L,w = (24v)

0.343, case II
Comparison of Eqs. (24a) and (24b) shows that even for this more com-
plicated (and more realistic) situation, the reference temperature pro-
cedure predicts very good heat transfer results.
FLUID PROPERTIES OF LIQUID MERCURY

As already noted in the INTRODUCTION, it was initially hoped to
study the variable property problem in several liquid metals. However,
it was observed that the property variations of the various liquid
metals of technical interest were sufficiently dissimilar that separate
investigations appeared to be necessary for each one. Moreover, the
computing time required to obtain numerical solutions for liquid metals
is an order of magnitude greater than that required for gases. So, it
was found necessary to limit the current study to one liquid metal,

namely, mercury.
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When considering the property variations of liquid mercury, it might
be well first to point out some qualitative trends and make comparisons
with gases. For liquid mercury, the viscosity decreases with increasing
temperature, while the thermal conductivity increases with temperature.*
On thé other hand, for gases, both the viscosity and conductivity in-
crease with temperature. The Prandtl number of mercury shows a strong
(percentage) decrease with increasing temperature, while the Prandtl
number of most gases varies by only a few percent over a large temper-
ature range. Also, the absolute magnitude of mercury‘’s Prandtl number-is
1 or 2 percent of that of gases. The above remarks apply to normal
engineering conditions, e.g., gas dissociation isc<excluded.

Property data for liquid mercury was taken from the Liquid Metals
Handbook (6). To facilitate numerical integrations, polynomial repre-

sentations of the following form were fitted to the data

i a t" (26)
n=0

where t 1s in degrees Fahrenheit. The coefficients a, are given in

Table TIII.

—

*
This is by no means the rule smong liquid metals.
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TABLE III
Coefficiernits For The Polynomical Representations

Of Properties Of Liquid Mercury

k M cp p
Btu 1b Btu 1b
hr.- ft - °p ft - hr b - 9f cu ft
ag | 4.47924 4.34620 0.334620(10"1) 8&51.514

ay 0.830958(1072) -0.991162(1072) -0.393353(107°) -0.864880(10‘1)

ag [ -0.380163(10™°)  0.179060(10"%)  0.344649(1078)  0.986194(10°°)

ag 0 -0.127524(10°7) 0 -0.592566(107%)

SUDUN . C L ewm AR g e o o i

HEAT TRANSFER RESULTS FOR LIQUID MERCURY
First, based on numerical solutions of Eqs. (8), heat transfer re-
sults are given for special cases. Then, these findings are utilized in
determining reference temperatures.

Results for specific cases. - For liquid mercury, the buoyancy force

appearing in the first of Egs. (8) does not simplify as it did for gases.
So, it is necessary to deal with Eqs. (8) as they stand. Further, the
nature of the property variations of liquid mercury requires that t
and t, be specified separately, i.e., that specific problems be con-
sidered. The two cases chosen for study are described below. In both

instances, t, > t_.



ty = 600° F ] ty = 450° F )
t_ = 100° F ty = 150° F
> case I } case II
Pr, = 0.0083 Pr, = 0.010
Pr_ = 0.022 | Pr, = 0.019 |

On the basis of the rather lengtﬁy numerical solutions of the differ-
ential Eqs. (8), the heat transfer results are found to b&:
: 0.0501, case I
/4 = 4 ’
Nuy L /ryly = Nup, Jferp’ o = (27)
0.0556, case II1
where the Grashof number is given by Eq. (13).

Reference temperature relation. - Now, it may be inquired as to

whether there is some reference temperature rule which will cause the

constant property heat transfer results to coincide with those of Eq. (27).
It has already been noted that the constant property analysis yields

heat transfer results which are given by Eq. (25). A plot of this re-

lation is given on Fig. 4(a) for the Prandtl number range appropriate

to liquid mercury. After making a few trials, it is found that by

evaluating k, v, B, and Pr at

Tp = Ty - 0.3(Ty - T.) (28)

the constant property heat transfer results: of Fig. 4(a) coincide with
those of Eq. (27). It is emphasized that this same reference temperature
is found for both variable property cases studied here.

It may next be inquired as to how well the film temperature, Tg;
might serve as an alternate reference temperature. The heat transfer
calculated for cases I and II by evaluating the constant property re-

sults of Fig. 4(a) at the film temperature Ty agree quite well with
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Eq. (27), certainly within the range of most engineering requirements.
The same statement applies when all the properties (including B) are
evaluated at T, = T, - 0.38(T, - I_), which was the reference tempera-
ture derived for gases.

EXPERTMENTAL VERIFICATION

A complete survey of available experimental heat transfer data for
free convection on a vertical plate is presented in Ref. 1. If is noted
there that the bulk of the experiments were carried out in air.

For air, the conditions of most tests were such that 1< TV/T_S 1.5.
These experimenters took no note of variable property effects. This
action is Justified by the results of the present analysis; for example,
see Fig. 2. In one experiment, that of Weise (7), a value of T,/T, of
2.2 was achieved. Unfortunately, Weise's apparatus, constructed for .
horizontal plate tests, was not well suited for vertical plate
studies.

For liquid mercury, Saunders' (8) work represents the only experi-
ment on a vertical plate. His tests were carried out at very small
temperature differences, and hence variable property effects did not
enter.

S0, it appears that there are currently no data available to check
the findings of the analysis presented here.

RESULTS FOR BOUNDARY LAYER THICKNESS
AND VELOCITY PARAMETERS

While the heat transfer is by far the result of greatest practical

importance, there are other quantities which may be of interest. A

brief description is given below of several quantities for which results
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are to be reported. Following the descriptive paragraphs, numerical
findings derived from the constant property anaslysis are given, and then
tables of reference temperature are supplied for extending these constant
property results to variable property situations.

(a) Boundary-layer thickness, 84: The thickness of the boundary
layer is by no means a precise concept, and its definition is somewhat
arbitrary. The distance from the plate surface at which T - T, has
shrunk to a small fraction i of the overall temperature difference, °
Tw - T,, is used here to define a boundary layer thickness. This defi-
nition, while satisfactory for Prandtl numbers below unity, should not
be used for high Prandtl numbers.

(b) Maximum velocity, upgx: The vertical velocity .u (parallel
to the plate surface) takes on zero values both at the surface and at
y = *. and hence achieves some maximum between.

(c) Location of the maximum velocity, y,: The distance from the
plate surface at which the velocity maximum occurs is denoted by Yy-

(d) Friction coefficient, cg: The coefficient of friction provides
a dimensionless presentation of the wall shear stress Ty 1in the fol-

lowing manner.

T - [“ %]);0
o(z)  ex)

The quotient, (v/x), plays the role of a characteristic velocity.

cy = (29)

(e) Flow rate, W: The upward flow generated by the free convec-

tion forces is given by
-

W= b£ pu dy (30)

where b is the plate width.
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Results from the constant property analysis. - Utilizing the tabu-

lated constant property solutions of Ostrach (2) in conjuction with those
of Ref. 1, results for the quantities described in paragraphs (a) through
(e) have been computed. A presentation of these findings for the Prandtl -
number ranges appropriated to gases and to liquid mercury is made
respectively on Figs. 3 and 4. Heat transfer results are also shown, The
Grashof number is given by Eq. (13a).

It was originally decided to define the boundary-layer thickness as
the distance from the plate where (T - T_)/(T, - T.) = 0.02. For the
Prandtl number range of gases, there was no difficulty evaluating such a
definition from the available numerical solutions. But, for the low
Prandtl number range, the numerical solutions were less precise at large
distances from the wall, and it was necessary to use a thickness based on
(T - T)/(Ty - T,) = 0.08. It is estimated that for the Prandtl mumber
range of mercury, 85 oo = 1.25 8g.05°

Variable property results; reference temperatures. - In a menner

identical to that outlined for the heat transfer, the findings of the
constant property analysis for the quantities described above may be ex-
tended to the variable property situation. It qnly remains to present
appropriate reference temperatures which are needed to evaluate the re-
sults of Figs. 3 and 4.

Such reference temperatures, computed using the variable property
solutions which have been obtained here for gases and for liquid mercury,
are listed in Tables 1¥{4) and((B). TThe heat transfer:reférence temper-

atures, already given by Egs. (20) and (28), are included for completeness.
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TABLE IV(a)

Reference Temperatine Relatiohs For Gases
(For use with Fig. 3)

(T, - T)/(T, - T,)

h ' 0.38

50.02 0.87 T
Wrox See below B = Ti
Yu 0.24 ®
cy 0.10

W 0.85

To find u,,, for gases, evaluate the Prandtl number of Fig. 3 at the
mean of the extreme values of Pr in the particular problem under
consideration.
TABLE IV(D)
Reference Temperatlire Relations

¥or Liquid Mercury
(For use with Figs. 4(a) and (b))

(T, - Ty /(T - Ty)

h 0.30
85.05 0.60
Unex 0
Yu Y
Cp 0.10
W 0.40

CONCLUDING REMARKS
From the findings reported here, it appears that free convection
heat transfer under variable property conditions can be: computed quickly
and accurately by using the constant property results in conjunction with
reference temperature relations. For gases and liquid mercury, the refer-

ence temperature relations are given by Egs. (20) and (28), respectively.
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Further, it may be observed that the film temperature appears to serve
as an adequate reference temperature (with B = 1/T_ for gases) for
most engineering purposes.

Reference temperature relations for use in computing boundary-layer
thickness and velocity parameters for variable property conditions are
given in Tables IV(a) and (b).
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